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A bs tract 

In the light of Einstein's equations a system only containing two scalar fields is considered: 
One is of long range and attractive, the other is of short range and repulsive. The sources 
of these fields are taken to be nonsingular and spherically symmetric. All components of 
the energy-momentum tensor are continuous. A static solution of the equations is obtained 
in the weak-field approximation. The source of the gravitational field shows a finite con- 
centration on the center of symmetry and dilutes monotonically to zero outwards. 
A Schwarzschild-type gravitation is found at infinity. 

1. In troduct ion  

One finds in the literature an increasing hope that general relativity can 
account for the structure and mass spectrum of the so-called elementary par- 
ticles. Solutions of the Einstein equations are then looked for, in which the 
energy-momentum tensor is nonsingular and corresponds to quantities with 
a physically acceptable interpretation. 

The first exact solution of the nonempty field equations is that of Schwarzs- 
child (1916), which corresponds to an uncharged, stable, spherically symmetric 
static distribution of matter with uniform density; the gravitational collapse of 
the sphere is prevented by a pressure field. However, pressure effects are usually 
considered a final macroscopic result of some microscopic interactions; it seems 
then advisable to avoid the concept of pressure in the description of a very 
elementary system; 

Another candidate to prevent the collapse of the system is the inertia of 
matter; in an Einstein cluster, for example, we have a collection of many gravi- 
tating masses in randomly oriented circular motions around a center of sym- 
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metry (Einstein, 1939; Teixeira and Som, 1974). However, besides being unstable, 
these clusters only postpone the solution of our problem to that of a large number 
of small individual massive systems. 

Coulomb repulsive effects can also be introduced in order to balance the 
gravitational attraction; one can then consider systems with density of matter and 
of charge (Bonnor, 1960). One soon verifies, however, that a static equilibrium 
can only be maintained when these two densities bear a constant and universal 
ratio; this in turn implies that all static systems of that nature should have the 
same charge-by-mass ratio, a fact that is not observed experimentally. 

Arbitrary charge-by-mass ratios were obtained (Teixeira et al., 1976) with 
the addition of long-range scalar fields of the type considered by Buchdahl 
(1959) and Wolk et al. (1975). However, one finds that two equally constructed 
spheres of this kind are iasensitive to each other, in the sense that their mutual 
gravitational, electric, and scalar asymptotic effects exactly balance; this also 
is in disagreement with observations. 

It was pointed out recently (Teixeira et al., 1975) that short-range scalar 
fields are very appropriate for the description of elementary systems; stable 
solutions were found for the static massive spheres, the constituents of which pro- 
duced not only gravitation but also a repulsive short-range scalar field. The 
energy-momentum of the system was taken as B f  + puUuv, where B f  corre- 
sponds to the scalar field and p represents the matter density with velocity u ". 
However, that model did not fully exploit an important result of general rela- 
tivity, namely, that all fields contribute to gravitation; it is then possible to 
obtain nonsingular solutions that do not explicitly contain matter density, but 
that nevertheless produce gravitational fields with physically acceptable 
asymptotic behavior. 

In the present paper we consider the simplest system of this kind that can 
present stability: It contains only a diffuse source of a short-range repulsive 
scalar field (with one parameter, the range t) and of a long-range (zero para- 
meter) attractive scalar field. The field equations are derived through variational 
principles. A class of static solutions with spherical symmetry is obtained; the 
solutions are regular everywhere and present the usual Schwarzschild gravita- 
tional behavior at infinity. 

2. Basic Equations 

We shall obtain our field equations from a Lagrangean density 

~ga= £0 G + ~o~q, A + ~o B (2.1) 

K " ~ G  1/  - l / 2 n  = 8rgG/c 4 (2.2) = - ~ l . - g )  I% 

K ~ A  = - ( - -g ) l / 2A ,~A ,~g  c~ + 2Ao~ (2.3) 

~ B  = (- g)l/2(B,o~B,~g~3 - B2/12) + 2Bo~ (2.4) 

in these expressions R is the scalar curvature (Anderson, 1967), g is the deter- 
minant of the gravitational potentials g,v, A is an attractive (Teixeira et al., 
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1976) scalar field of  long range, and B is a repulsive scalar field of  short range 
l. An explicit dependence of  ~ on the four coordinates x u occurs in o~ and 
o}}; these are scalar densities of weight + 1, and represent the sources of  the 
fields A and B. Subscripted commas mean ordinary derivative: 

Upon variations of  the gravitational potentials guy we get the Einstein 
equations 

R ~  ~ = - 2 A ' ~ A , ~ ,  + 2B '~B,p  - 6 ~ B 2 / 1 2  (2.5) 

while the variations of  the fields A and B give 

A I ~  = - o A (2.6) 

B~Uu + B / I  2 : a s  (2.7) 

where we introduced the scalar quantities of  weight zero 

o= (-g)-1/2o* (2.8) 

a semicolon means covariant derivative. The contracted Bianchi identities give, 
using (2.6) and (2.7), 

OAA,I ~ + OBB,~ = 0 (2.9) 

We shall consider a static and spherically symmetric system, so we use the 
metric element 

d s  2 = e 2 " ~ ( d x ° )  2 , -  e 2~ d r  2 - r 2 dO 2 - r 2 sin e 0 d~b 2 (2.10) 

with ~ and a functions of r alone; with the fields A and B, and the densities 
o A and o B also functions o f r  alone, we obtain from the preceding equations 

(r/ll + 2~/l/r + r/12 -- r/lCtl)e -2a = B 2 / l  2 (2.11) 

0711 - 2 a l / r  + 712 --~11al) e-2c~ = B 2 / l  2 - 2(A12 - B12)e -2c~ (2.12) 

0 1 1 / r -  o q / r  + 1/rZ)e  -2c' - 1/r 2 = B 2 / t  2 (2.13) 

r - 2 ( r 2 e ~ - ~ A ~ ) l e - ~ - ~  = ~A (2.14) 

r -2 ( r2  e n - C ~ B 1 ) t e -  n - ~  - B / l  2 = - a  B (2.15) 

with the identity 

a A A  1 + e B B i  = 0 (2.16) 

a subscript 1 means d/dr.  
Since in the five independent equations (2.11)-(2.15) we have six functions 

(r~, oL, A ,  B ,  aA ,  OB) , one constraint is necessary in order to get explicit solu- 
tions: It seems more natural for our purposes to consider 

o13 = f O A ,  f = const (2.17) 

In view of difficulty in finding exact solutions, we try an approximate 
method: We expand our four fields ~/, c ~ , A , B  and our two densities OA, o13 
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in integral powers of  some small dimensionless parameter e, to be identified 
later. In the lowest approximation we have taken o A , gB, A,  B proport ional  
to e, and we have taken r/,c~ proport ional  to e2; then (2.11)-(2.17) simplify to 

r111 + 2r?l/r = B 2 / l  2 (2.18) 

r/11 - 2&l/r  = B2 / l  2 - 2(A 12 -- B12) (2.19) 

rh / r  - c ~ l / r -  2eL/r 2 = B2/I 2 (2.20) 

A 1.t + 2A 1/r = o A (2.21) 

BI1 + 2 B 1 / r -  B/12 = - f o A  (2.22) 

(A1 +/~x)OA =0 (2.23) 

One finds that in this order of  approximation the field equations decoupled 
themselves; we can then use the three last equations to obtain the fields A and 
B, then from (2.18) we get the gravitational potential  r~, and finally we obtain 
c~ directly from a combinat ion of (2.18)-(2.20): 

c~ = rFl  - ½ r Z ( A  12 -- BI 2 + B2/I  2) (2.24) 

3. The Scalar Fields 

In regions where OA ~ 0 we get from (2.21)-(2.23) 

B t l  + 2 B i / r  + (f2 _ 1 ) - , B / l  2 = 0 (3.1) 

since we must h a v e f  2 > 1 in order to prevent the collapse of the system 
(Teixeira et al., 1975), we obtain the solution regular at the origin 

B i = s(pr) -1 sin ur, s = const (3.2) 

p-1 = l(f2 ,_ 1)I/2 (3.3) 

where the subscript i means internal. Then from (2.22) and (2.21) we obtain 
the solutions also regular at the origin 

04 = fsu2(vr)  -1 sin ur (3.4) 

A i  . . . . .  f s[ (vr)  -1 sin ur+ u] ,  u = const (3.5) 

In regions where o.4 = 0 we obtain from (2.21) and (2.22) 

A e  = - v / r ,  v = const (3.6) 

Be = wr -1e-vI i ,  w = const (3.7) 

where the subscript e means external. 
We now have to impose the continui ty of  the fields A and B, and of their 

radial derivatives on the boundary r = a of  the sphere; as a consequance of  these 
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four imposi t ions we obta in  the values of  the three constants  u, v, w, and also 
a constra int  for the radius a: 

cot ua = - ( 1  "2 - 1) 1/2 (3.8) 

A short  reflection shows that variations of  sign of the densities oA and oB 
would induce instabil i ty in the system; one then finds from (3.4) that the only 
acceptable solut ion for ~,a in (3.8) is the smallest one, 

7r/2 < va < 7r (3.9) 

which in turn implies that 

sin ua = l f I - 1  > 0, 

We then obtain 

cosua  . . . . .  ( f2 _ 1)1/2i./.t-t < 0  (3. t0)  

A i . . . . .  sf[@r) -1 sin ur - cos ua] (3.11) 

A e --'= - s f  sin pa(1 + a/ l ) (pr)  -1 (3.12) 

B i = s(ur) -1 sin ur (3.13) 

Be = s sin u a ( u r ) - l e  - ( r - a ) / l  (3.14) 

These fields A a n d B  then present  a max imum absolute value on the origin, 
and have a mono ton ic  variation tending to zero as r -+ 

4. T h e  Gravi ta t ional  F ie ld  

We can now integrate (2.18) to obta in  ~(r) con t inuous  on the boundary  a, 
with radial derivative also cont inuous .  For  r ~< a we obta in  

r h = r~(0) + ½s2(f 2 - 1)[(2pr) -1 sin (2pr) - 1 + In ( 2 p r ) -  ci(2ur) + C] 

(4.1) 
r/(0) = --½s2(f 2 - 1)[ln (2pa) ..... ci (2pa) + C -  2 f - 2 e  2a/l Ei ( - 2 a / l ) ]  

(4.2) 

where C = 0.577 . . .  is the Euler constant ,  and the cosine and exponent ia l  
integral are 

ci(x)=-[t-lcostdt,. Ei(-x)=-ft-letdt, x>O (4.3) 
x 3~ 

for r >~ a we obta in  

~?e = - ½ s 2 ( f  2 - 1)r -1 (a + l - f - 2  [le-2rfl  + 2r Ei ( - 2 r / l ) ]  e 2a/l } (4.4) 

Final ly  the gravitational potent ial  a(r)  is obta ined from (2.24): We get 

a i = - - ½ S 2 0  e2  - -  1)(1 - vr cot vr)(ur) - z  sin 2 vr (4.5) 

ae = ~s2( f  2 - 1)r -1 [a + l - r - l ( a  + l)2 + f - 2 / (  1 + l / r ) e -Z (~ -a ) / t ]  (4.6) 
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These two expressions coincide on the boundary r = a. 
We find that at the origin we have c~(0)= 0, while at infinity we have the 

usual Schwarzschild behavior 

= - a  = - ½ s Z ( f  2 - 1)(a + 1)r -1 , r -+ ,,~ (4.7) 

5. Discussion 

From (3.1 1) to (3.14) and from (4. t )  to (4.6) we find that we can identify 
sf with the dimensionless parameter e in terms of which we expanded our 
gravitational and scalar fields. Our solution is then valid tbr 

I s f l  ~ 1 (5.1) 

Differently from the Schwarzschild interior-exterior solution, also the 
derivatives c~ 1 and rhl  of the gravitational potentials are continuous through 
the boundary r = a; this is a consequence of the absence of any discontinuous 
quantity (like density of matter in Schwarzschild solution) in the field equations 
(2.5). 

Remembering that in Schwarzschild-type systems the mass parameter m is 
defined by the asymptotic behavior ~e = - G m / c  zr, r -+ ~o, we find from (4.7) 
that our system behaves gravitationally as a mass 

m = ½sZ(f 2 - t )(a  + l ) c2 /G  (5.2) 

From (2.18) we find that the contribution for this value comes solely from 
the square of the short-range scalar field B; so from (3.13) and (3.14) we get 
that the gravitational source is more concentrated in regions close to the origin, 
and dilutes monotonically to zero with increasing r, in a negative exponential 
rate. 
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